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Abstract

We investigate the efficacy of artificial thermal conductivity for shock captur-
ing. The conductivity model is derived from artificial bulk and shear viscosi-
ties, such that stagnation enthalpy remains constant across shocks. By thus
fixing the Prandtl number, more physical shock profiles are obtained, only
on a larger scale. The conductivity model does not contain any empirical
constants. It increases the net dissipation of a computational algorithm but
is found to better preserve symmetry and produce more robust solutions for
strong-shock problems.
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Artificial viscosities have been employed for over six decades to capture
shocks in high Mach number flows [1]. By incorporating viscous terms in
the momentum and energy equations, shocks can be spread over several grid
points, thus regularizing solutions on discrete meshes. At the molecular scale,
shocks have internal structure, which depends not only on the viscosity but
also on the thermal conductivity of the fluid. Typical Prandtl numbers for
air and many other gases near atmospheric conditions are on the order of
unity. However, in numerical simulations employing artificial viscosity, ther-
mal conductivity is often neglected, or else employed in a manner unrelated
to viscosity, such that the effective Prandtl number inside shocks is much
greater than unity. This can have unintended consequences, such as “wall
heating” [2, 3]. The purpose of this Short Note is to explore the pros and cons
of an artificial conductivity that mimics the relationship of physical conduc-
tivity to physical viscosity. The artificial conductivity is designed to produce
numerical shock profiles similar to physical shock profiles, but rescaled from
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the molecular realm to the grid scale.
For simplicity, consider a one-dimensional shock in a coordinate system

in which the shock is stationary. The steady-state conservation equations
can be spatially integrated to yield:

ρu = ρ1u1 , (1)

p+ ρu2 − τxx = p1 + ρ1u
2
1 , (2)

ρu(h+ u2/2) + qx − uτxx = ρ1u1(h1 + u2
1/2) , (3)

where ρ is density, u is velocity, p is pressure, h is enthalpy, τxx is viscous
stress, qx is heat conduction and the 1 subscripts denote upstream supersonic
conditions. The enthalpy is

h = e+ p/ρ = cpT (4)

where e is thermal energy, T is temperature and cp is constant-pressure spe-
cific heat. Equations (1), (2) and(3) apply locally within the shock wave.
The Rankine-Hugoniot jump conditions require the stagnation enthalpy to
match on either side of the shock; i.e.,

h2 + u2
2/2 = h1 + u2

1/2 , (5)

where the 2 subscripts denote downstream subsonic conditions. Comparison
of (3) and (5) suggests that a useful form of artificial conductivity can be
educed by requiring the stagnation enthalpy, h+ u2/2, to be constant inside
the shock as well as on either side. This is equivalent to enforcing

dh

dx
+ u

du

dx
= 0 (6)

throughout the shock wave. The Fourier heat flux then becomes

qx ≡ −κ
dT

dx
= − κ

cp

dh

dx
=

κ

cp
u
du

dx
, (7)

where κ is thermal conductivity. The Navier-Stokes viscous stress is

τxx ≡
(
β +

4

3
µ

)
du

dx
, (8)
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where β is bulk viscosity and µ is shear viscosity. We see from (3) that a
constant stagnation enthalpy requires qx = uτxx or k/cp = (β+4µ/3). Hence,
a promising conductivity model for preserving monotonicity across the shock
is

κ = (β + 4µ/3)h/T . (9)

A convenient feature of this model is that it does not involve any empirical
constants. Note that for β = 0, (9) is equivalent to setting the Prandtl
number to 3/4 [4]. Lee et al. [5] successfully employed (9) (with β = 0
and a temperature-dependent µ) in their Direct Numerical Simulations of a
shock interacting with isotropic turbulence . Here we explore the efficacy of
(9) for Large-Eddy Simulations (LES), wherein subgrid-scale models may be
employed for µ and/or β.

For the simulations reported herein, we employ the following grid-dependent
viscosity models [6, 7, 8, 9, 10]:

µ = 0.002ρ |∇4 (SL6)| , (10)

β = ρ |∇4(∇ · u)|L6H(−∇ · u) , (11)

where S is the magnitude of the strain-rate tensor, L is the grid spacing, H
is the Heaviside function, ∇4 is the biharmonic operator and the overbar ()
denotes a gaussian filter of width 4L. The factor of 0.002 in (10) was em-
pirically determined to produce the correct subgrid energy flux for decaying
turbulence [7] and the Taylor-Green vortex [8]. The Navier-Stokes equations
are solved in strong conservation form with spatial derivatives computed via
tenth-order compact differencing [11] and temporal integration accomplished
via fourth-order Runge-Kutta timestepping [12]. Since the compact sten-
cils are purely centered, there is zero numerical dissipation associated with
the spatial differencing algorithm. The explicit Runge-Kutta time-stepping
scheme introduces only very slight dissipation [6]. The role of µ and β in
LES is to keep the solution smooth at the grid scale in order to avoid Gibbs
phenomenon and other ringing associated with flow discontinuities.

As a first test of the conductivity model (9), we consider the spherical
Noh implosion [2]. The nondimensional initial conditions are: ρ = 1, p = 0
and u = unit vector directed toward origin, with an adiabatic index of γ =
5/3 (all test problems herein use an ideal-gas equation of state). In this
problem, an infinite-strength shock expands outward from the origin at a
constant radial velocity of 1/3. In Figure 1, the results of simulations with
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Figure 1: Density at t = 0.6 for the spherical Noh implosion. The shock at this time should
be located at a radius of 0.2. The simulations were performed on a uniform Cartesian grid
with spacing L = 0.002. The simulation on the left is without conductivity, the simulation
on the right is with conductivity and the plot in the center is the exact solution.

and without thermal conductivity are compared to the exact solution. The
artificial thermal conductivity is here seen to reduce wall heating and produce
a shock slightly closer to the exact location. The conductivity model also
reduces spurious oscillations behind the shock and helps preserve spherical
symmetry.

As a second test of the artificial conductivity, we consider the spherical
Sedov-Taylor-von Neumann blast wave [13, 14, 15]. Whereas the Noh prob-
lem is purely compressive, the Sedov blast wave is strongly expansive. The
initial/flow conditions are: ρ = 1, u = 0, e = 0.8510718547582291δ(r) and
γ = 1.4. With this initial energy source, the shock propagates outward to a
radius of r = 1 at t = 1. A challenging aspect of this problem is the near
vacuum left behind at the origin. For a momentum-conserving solver, the low
density near the origin magnifies errors in the velocity field. Computed veloc-
ity fields, with and without conduction, are compared to the exact solution
in Figure 2. Once again, the artificial conductivity helps preserve spherical
symmetry and produces a flow closer to the exact solution.

As a third test, we consider the slowly moving shock studied by Jin and
Liu [16]. The initial conditions are: ρ = 3.86, u = −0.81, e = 6.690421502590674
for x < 0.5 and ρ = 1.0, u = −3.44, e = 2.5 for x ≥ 0.5, with γ = 1.4. These
conditions result in a Mach-3 shock traveling to the right with speed 0.1096.
Figure 3 shows momentum at t = 1.0. Jin and Liu [16] have shown that up-
wind schemes applied to this problem generate large momentum spikes ahead
of the shock and exhibit strong oscillations behind the shock. The momen-
tum spike is caused by numerical viscosity introduced into the continuity
equation by upwinding. The present (centered) scheme does not generate
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Figure 2: Velocity magnitude at t = 1.0 for the spherical Sedov blast wave. The simulations
were conducted on a uniform Cartesian grid with spacing L = 0.01. The simulation on
the left is without conductivity, the simulation on the right is with conductivity and the
plot in the center is the exact solution.

Figure 3: Momentum (ρu) at t = 1.0 for Jin-Liu shock, using a grid spacing of L = 0.01.
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Figure 4: Entropy at t = 1.8 for Shu’s problem using L = 0.05.

the anomalous momentum spike but still suffers from oscillations generated
by the unsteadiness of the discrete shock profile. The conductivity model
reduces the spurious oscillations by half, both ahead and behind the shock.
Artificial conduction significantly improves the solution in this case, although
it does not completely solve the problem.

Our fourth test is the Shu-Osher problem, a canonical model of a one-
dimensional shock-turbulence interaction [17]. The initial conditions are:
ρ = 3.857143, p = 10.33333, u = 2.629369 for x < −4 and ρ = 1+0.2 sin(5x),
p = 1, u = 0 for x ≥ −4, with γ = 1.4. As the shock propagates into the
sinusoidal density field, it leaves a steeply oscillating flow in the post-shock
region. Figure 4 shows the entropy solution at t = 1.8. In this case, ar-
tificial conduction fortunately removes the unphysical pre-shock oscillations
but unfortunately damps the physical post-shock oscillations. Entropy be-
hind the shock is very sensitive to heat conduction. With the conduction
model turned on, a grid resolution of L = 0.01 is required to match the
amplitude of the post-shock oscillations of the case with the model off. The
problem here is that the wavelength of the post-shock oscillations is too close
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Figure 5: Density at t = 10 µs for shock impacting an air-SF6 interface. The simulations
were conducted on a uniform Cartesian grid with L = 2 µm.

to the grid scale for the model to distinguish between physical and numerical
ringing. With the conduction model active, the grid must be refined until a
separation of scales is achieved.

Our fifth and final test is the fast-slow gas interface experiment of Abd-El-
Fattah and Henderson [18]. In one series of experiments, an incident shock,
traveling in air with a pressure jump of 4, impacts an inclined SF6 interface.
The shock lays down a vortex sheet at the interface and the interaction
generates an irregular refraction at the triple point. An interesting feature of
this interaction is the formation of a Mach stem. In numerical simulations,
the length of the Mach stem is known to be sensitive to grid resolution and
the amount of dissipation in the computational algorithm. We initialize our
simulations with the interface at an angle of 58 degrees with respect to a
Mach 1.89 shock. The pre-shocked air and SF6 are at a pressure of 1 bar and
temperature of 295 K. At t = 0 the shock is located 1 mm away from the
closest edge of the SF6 interface. Figure 5 shows the density field at t = 10µs.
The shocked interface is Kelvin-Helmholtz unstable due to the difference in
shock speed for the two gases. Grid-seeded perturbations thus grow into an
array of vortices along the interface. In the case with no conduction, grid-
perturbations to the discrete shock profile generate pressure waves, which
propagate across the triangular region of the shocked SF6 (see left image in
Fig. 5). With the conduction model turned on, the discrete shock profile
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is more monotonic and the anomalous pressure waves never get generated.
The improved solution in the shocked SF6 region comes at the expense of a
reduced Mach stem, which is a result of the extra dissipation introduced by
the artificial heat conduction.

From the results of these test problems, we may draw several conclusions
regarding the fixed-Prandtl-number conductivity model. Some significant
advantages are: (A) more physical shock profiles, albeit at a larger scale;
(B) alleviation of wall heating; (C) symmetry preservation, e.g., spherical
implosions/explosions on square grids; (D) reduction of spurious oscillations
around shocks and (E) removal of grid-seeded pressure waves. The primary
disadvantages of the model are: (A) increased damping of small-scale physical
oscillations and (B) dissipation of features that are sensitive to sharp entropy
and/or energy gradients. In summary, experience with the current solver has
shown that the best results are achieved by employing the conduction model
with sufficient grid resolution, such that features of interest are well resolved.
The computational cost of the model is negligible and it is extremely simple to
implement; hence, it ought to prove useful in almost any LES code employing
artificial or subgrid-scale viscosity.
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